Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 599
Filtrar
1.
J Chromatogr A ; 1715: 464600, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38176352

RESUMO

An automated implementation for a subfractionation of mineral oil aromatic hydrocarbons (MOAH) into a mono-/di-aromatic fraction (MDAF) and a tri-/poly-aromatic fraction (TPAF) is presented, which is highly demanded by the European Food Safety Authority (EFSA) respecting the genotoxic and carcinogenic potential of MOAH. For this, donor-acceptor-complex chromatography (DACC) was used as a selective stationary phase to extend the conventional instrumental setup for the analysis of mineral oil hydrocarbons via on-line coupled liquid chromatography-gas chromatography-flame ionization detection (LC-GC-FID). A set of six new internal standards was introduced for the verification of the MOAH fractionation and a quantification of MDAF and TPAF, respectively. The automated DACC approach was applied to representative petrochemical references as well as to food samples, such as rice and infant formula, generally showing well conformity with results obtained by state-of-the-art analysis using two-dimensional GC (GCxGC). Relative deviations of DACC/LC-GC-FID compared to GCxGC-FID methods regarding the ≥ 3 ring MOAH content ranged between -50 and +6 % (median: -2 %, all samples, only values above limit of quantification). However, crucial deviations mainly result from "border-crossing" substances, e.g., dibenzothiophenes or partially hydrogenated MOAH. These substances can cause overestimations of ≥ 3 ring MOAH fraction during GCxGC analysis due to co-elution, which is mostly avoided using the DACC approach. Furthermore, the DACC approach can help to minimize underestimations of toxicologically relevant ≥ 3 ring MOAH caused by an unavoidable loss of MOAH during epoxidation, since natural olefins, such as terpenes, predominantly elute in MDAF, which was exemplarily shown for an olive oil and a terpene reference. The presented approach can be implemented easily in existing LC-GC-FID setup for an automated and advanced screening of MOAH to lower the need for elaborate GCxGC analysis also in routine environments.


Assuntos
Hidrocarbonetos Aromáticos , Óleo Mineral , Humanos , Óleo Mineral/análise , Contaminação de Alimentos/análise , Hidrocarbonetos Aromáticos/análise , Cromatografia Gasosa/métodos , Cromatografia Líquida/métodos , Hidrocarbonetos/análise , Terpenos/análise
2.
J Environ Manage ; 351: 119630, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38043308

RESUMO

In order to obtain extended storage life of food-grade materials and better barrier properties against environmental factors, a multilayer plastic packaging (MLP) is often used. The multilayer packaging plastics are labelled as "other" (SPI#7) category, and are manufactured with a combination of barrier plastics, rigid plastics and printing surface. Owing to their complex composition and difficulty in separating the layers of MLP, its mechanical recycling is challenging. In this study, MLP wastes (MLPWs) were collected from zero-waste garbage collection center of IIT Madras, India, and thoroughly characterized to determine their composition and plastic types. MLPWs were characterized using various physico-chemical methods such as thermogravimetric/differential scanning calorimetric analysis, Fourier transform infrared spectroscopy, bomb calorimetry, and proximate and ultimate analyses. The MLPWs were mainly made up of polyethylene (PE) and polyethylene terephthalate (PET). Further, the non-catalytic and zeolite-catalyzed fast pyrolysis of these MLPWs were studied using analytical pyrolysis coupled with gas chromatograph/mass spectrometer (Py-GC/MS). The non-catalytic fast pyrolysis of MLPWs primarily produced a mixture of aliphatic and alicyclic hydrocarbons, while zeolite catalyzed fast pyrolysis resulted in the formation of mono-aromatic hydrocarbons (MAHs). The activity of HZSM-5, zeolite Y (HY) and zeolite beta (Hß) catalysts were evaluated, and the salient products were quantified. The yields of MAHs like benzene, toluene, ethylbenzene and xylene using the zeolites followed the trend: HZSM-5 (14.9 wt%) > HY (8.1 wt%) > Hß (7.8 wt%), at 650 °C. The use of HZSM-5 resulted in highest yield of MAHs, viz. 16.1 wt%, at the optimum temperature of 550 °C and MLPW-to-catalyst ratio of 1:15 (w/w). The superior activity of HZSM-5 is due to its nominal acidity and larger pore size of 4.24 nm, as compared to HY and Hß. The MAHs yield from three other types of MLPWs varied in the range of 9-16 wt%. The present study demonstrates a promising pathway for the catalytic upcycling of highly heterogeneous MLPWs in the context of circular economy.


Assuntos
Hidrocarbonetos Aromáticos , Zeolitas , Zeolitas/química , Índia , Hidrocarbonetos/análise , Hidrocarbonetos Aromáticos/análise , Catálise , Tolueno , Temperatura Alta
3.
Artigo em Inglês | MEDLINE | ID: mdl-37768112

RESUMO

Methods for determining MOSH and MOAH in edible oils showed major problems with interlaboratory comparability of analytical results, especially in the lower concentration range below 10 mg/kg. However, a method with improved sensitivity and reproducibility is urgently needed to obtain a valid data basis for minimization efforts. To cope this problem a new method was created in 2020. The method was established as the standard method DGF C-VI 22 (20) of the German Society for Fat Science e.V. (DGF). For the development of this method different sample epoxidation approaches have been performed, evaluated and improved. Additionally, a saponification, a decision tree for sample preparation, an upstream clean-up column and a system suitability test were introduced. The focus was on reliability and interlaboratory comparability over all edible oil matrices up to a LOQ of 1 mg/kg. The optimized method was validated in terms of trueness and precision in a collaborative trail with 11 laboratories. The achieved recovery rates of 89-105% MOSH and 70-105% MOAH met the JRC requirements. Method and validation results were obtained with HorRat values between 1.3 and 1.8 for MOSH and MOAH.


Assuntos
Hidrocarbonetos Aromáticos , Hidrocarbonetos Aromáticos/análise , Óleo Mineral/análise , Cromatografia Gasosa/métodos , Reprodutibilidade dos Testes , Contaminação de Alimentos/análise , Óleos
4.
Chemosphere ; 337: 139264, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37348617

RESUMO

Pollution from the oil industries and refineries has worsened various environmental compartments. In this study, indigenous oil degrading bacteria were isolated from crude oil obtained from an Oil and Natural Gas Corporation (ONGC) asset in Ankleshwar, Gujarat, India. Based on 16S rRNA phylogeny, they were identified as Pseudomonas boreopolis IITR108, Microbacterium schleiferi IITR109, Pseudomonas aeruginosa IITR110, and Bacillus velezensis IITR111. The strain IITR108, IITR109, IITR110, and IITR111 showed 80-89% and 71-78% degradation of aliphatic (C8-C40) and aromatic (4-5 ring) hydrocarbons respectively in 45 d when supplemented with 3% (v/v) waste crude oil. When compared to individual bacteria, the consortium degrades 93.2% of aliphatic hydrocarbons and 85.5% of polyaromatic hydrocarbons. It was observed that the total aliphatic and aromatic content of crude oil 394,470 µg/mL and 47,050 µg/mL was reduced up to 9617.75 µg/mL and 4586 µg/mL respectively in 45 d when consortium was employed. The rate kinetics analysis revealed that the biodegradation isotherm followed first order kinetics, with a linear correlation between concentration (hydrocarbons) and time intervals. The half-life of aliphatic (C8-C40) and aromatic hydrocarbons ranged from 200 to 453 h and 459-714 h respectively. All the bacteria efficiently produced catabolic enzymes such as alkane monooxygenase, alcohol dehydrogenase, and lipase during the degradation of crude oil. These findings indicated that the bacterial consortium can be a better candidate for bioremediation and reclamation of aliphatic and aromatics hydrocarbon contaminated sites.


Assuntos
Hidrocarbonetos Aromáticos , Petróleo , Poluentes do Solo , Petróleo/análise , Cinética , Meia-Vida , Solo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Hidrocarbonetos Aromáticos/análise , Hidrocarbonetos/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Poluentes do Solo/análise
5.
Ecotoxicol Environ Saf ; 257: 114917, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37094484

RESUMO

Aromatic hydrocarbons are unsaturated compounds containing carbon and hydrogen that form single aromatic ring, or double, triple, or multiple fused rings. This review focuses on the research progress of aromatic hydrocarbons represented by polycyclic aromatic hydrocarbons (including halogenated polycyclic aromatic hydrocarbons), benzene and its derivatives including toluene, ethylbenzene, xylenes (o-, m- and p-), styrene, nitrobenzene, and aniline. Due to the toxicity, widespread coexistence, and persistence of aromatic hydrocarbons in the environment, accurate assessment of exposure to aromatic hydrocarbons is essential to protect human health. The effects of aromatic hydrocarbons on human health are mainly derived from three aspects: different routes of exposure, the duration and relative toxicity of aromatic hydrocarbons, and the concentration of aromatic hydrocarbons which should be below the biological exposure limit. Therefore, this review discusses the primary exposure routes, toxic effects on humans, and key populations, in particular. This review briefly summarizes the different biomarker indicators of main aromatic hydrocarbons in urine, since most aromatic hydrocarbon metabolites are excreted via urine, which is more feasible, convenient, and non-invasive. In this review, the pretreatment and analytical techniques are compiled systematically for the qualitative and quantitative assessments of aromatic hydrocarbons metabolites such as gas chromatography and high-performance liquid chromatography with multiple detectors. This review aims to identify and monitor the co-exposure of aromatic hydrocarbons that provides a basis for the formulation of corresponding health risk control measures and guide the adjustment of the exposure dose of pollutants to the population.


Assuntos
Hidrocarbonetos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Monitoramento Biológico , Hidrocarbonetos Aromáticos/análise , Benzeno/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Biomarcadores/urina , Monitoramento Ambiental/métodos
6.
J Hazard Mater ; 450: 131066, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36857831

RESUMO

Several oxidative treatment technologies, such as ozonation or Fenton reaction, have been studied and applied to remove monocyclic hydroaromatic carbon from water. Despite decades of application, little seems to be known about formation of transformation products while employing different ozone- or ∙OH-based treatment methods and their fate in biodegradation. In this study, we demonstrate that O3/H2O2 treatment of benzene, toluene, ethylbenzene (BTE), and benzoic acid (BA) leads to less hydroxylated aromatic transformation products compared to UV/H2O2 as reference system - this at a similar ∙OH exposure and parent compound removal efficiency. Aerobic biodegradation tests after oxidation of 0.15 mM BA (12.6 mg C L-1 theoretical DOC) revealed that a less biodegradable DOC fraction > 4 mg C L-1 was formed in both oxidative treatments compared to the BA control. No advantage of ozonation over UV/H2O2 treatment was observed in terms of mineralization capabilities, however, we detected less transformation products after oxidation and biodegradation using high-resolution mass spectrometry. Biodegradation of BA that was not oxidized was more complete with minimal organic residual. Overall, the study provides new insights into the oxidation of monocyclic aromatics and raises questions regarding the biodegradability of oxidation products, which is relevant for several treatment applications.


Assuntos
Hidrocarbonetos Aromáticos , Ozônio , Poluentes Químicos da Água , Purificação da Água , Água , Peróxido de Hidrogênio/química , Poluentes Químicos da Água/química , Oxirredução , Hidrocarbonetos Aromáticos/análise , Ozônio/química , Purificação da Água/métodos
7.
Artigo em Inglês | MEDLINE | ID: mdl-36608113

RESUMO

The goal of this work was to investigate the impact of refining on coconut oil particularly on the most toxicologically relevant fraction of the mineral oil aromatic hydrocarbon (MOAH) contamination, namely the fraction composed by the three to seven aromatic rings. A fully integrated platform consisting of a liquid chromatography (LC), a comprehensive multidimensional gas chromatography (GC) (LC-GC × GC) and flame ionization detector (FID) was used to obtained a more detailed characterization of the MOAH sub-classes distribution. The revised EN pr 16995:2017-08 official method was used for preparing the samples, both with and without the auxiliary epoxidation step. Crude coconut oil was spiked with different MOAH standards, namely naphthalenes, alkylated naphthalenes, benzo(a)pyrene, and its alkylated homologues. Refining was modelled by deodorization at 230 °C, stripping with 10 kg/h of steam under 1 mbar vacuum for 3 h. Complete removal of the naphthalenes and reduction of more than 98.8% of the benzo(a)pyrenes was observed. Epoxidation had a significant impact on the MOAH fraction with more than three rings, but with a high dependency on the sample matrix, being significantly less evident in the refined samples than in the crude ones.


Assuntos
Hidrocarbonetos Aromáticos , Petróleo , Óleo Mineral/análise , Óleo de Coco/análise , Contaminação de Alimentos/análise , Hidrocarbonetos Aromáticos/análise , Cromatografia Gasosa/métodos , Petróleo/análise
8.
Food Chem ; 406: 135032, 2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-36493572

RESUMO

During the 2020-21 olive oil campaign, the contribution of harvesting operations to mineral oil saturated (MOSH) and aromatic hydrocarbon (MOAH) contamination was studied. Oils extracted from hand-picked olives (15 different olive groves) generally had background MOSH (<2.7 mg/kg), and no quantifiable MOAH. In 40% of the cases, an important contamination increase was observed after harvesting operations. Except for one sample (325.8 and 111.0 mg/kg of MOSH and MOAH, respectively), other samples reached 4.3-33.7 mg/kg of MOSH and 1.1-11.3 mg/kg of MOAH. Accidental leaks of lubricants and/or contact with lubricated mechanical parts, were identified as important sources of contamination. Chromatographic traces obtained by on-line high-performance liquid chromatography (HPLC)-gas chromatography (GC)-flame ionization detection (FID) allowed for source identification. A comprehensive two-dimensional gas chromatographic platform (GC × GC) with parallel FID/MS detection was implemented for confirmation and to attempt the characterization of the contaminations. Good harvesting practices are suggested to minimize contamination risks.


Assuntos
Hidrocarbonetos Aromáticos , Óleo Mineral , Óleo Mineral/química , Azeite de Oliva/análise , Contaminação de Alimentos/análise , Hidrocarbonetos Aromáticos/análise , Cromatografia Gasosa/métodos
9.
Sci Total Environ ; 862: 160786, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36502687

RESUMO

The interaction of MPs and aromatic hydrocarbons in seawater and pure water was examined using experimental measurements, molecular dynamics (MD) simulations, and density functional theory (DFT) calculations in light of the potential health risks posed by microplastic (MPs)-associated aromatic hydrocarbon pollutants. Isothermal studies and MD simulations suggested that MPs have a stronger affinity for aromatic hydrocarbons in seawater. To uncover the mechanism, MPs' surface characteristics and their intermolecular interactions with aromatic hydrocarbons were examined. According to the research, MPs in seawater have less compact structure, bigger pores, and a higher specific surface area, all of which contribute to more sorption sites. Analysis of the intermolecular interaction indicated that MPs have a greater ability for molecular interactions in seawater and the interaction energy between MPs and aromatic hydrocarbons in seawater is higher. Additionally, seawater cations may act as bridges, which also accelerate sorption in seawater. In summary, this study provides a molecular-level understanding of MPs-aromatic hydrocarbons interaction and demonstrates that the interaction is stronger in seawater.


Assuntos
Hidrocarbonetos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Microplásticos/química , Plásticos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Água , Adsorção , Poluentes Químicos da Água/análise , Água do Mar/química , Hidrocarbonetos Aromáticos/análise
10.
Anal Chim Acta ; 1234: 340098, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36328715

RESUMO

Contamination of foods with mineral oil hydrocarbons, particularly mineral oil aromatic hydrocarbons (MOAH), can potentially pose a health hazard to consumers. However, identifying toxic substances among the many thousands of compounds comprising mineral oils in food samples is a difficult analytical challenge. According to the European Food Safety Authority, there is a lack of concentration and structural data about mineral oil hydrocarbons in foods, and therefore it is not clear to what extent consumers in Europe might be exposed to toxic levels of MOAH. The current gold standard method for determination of mineral oil hydrocarbons is online high-performance liquid chromatography (LC)-gas chromatography (GC) with flame ionization detection, which quantifies total saturated/aromatic content, but gives no qualitative information. The objective of this review is to explore the future prospects in mineral oil hydrocarbon determination and MOAH characterization in foods. To that end, peer reviewed literature was explored, particularly from the viewpoint of a methodology for detailed characterization of the MOAH fraction that can aid toxicological assessment. The literature clearly shows that there is much to be gained from the orthogonality power of multidimensional chromatographic separations and mass spectrometric (MS) detection. Comprehensive two-dimensional GC coupled to MS, preceded by pre-fractionations of MOAH by LC is suggested to be the most promising approach for further research. In addition, the strengths and weaknesses of a number of other, alternative approaches, both for qualitative and quantitative analysis, are discussed.


Assuntos
Hidrocarbonetos Aromáticos , Óleo Mineral , Óleo Mineral/análise , Contaminação de Alimentos/análise , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos Aromáticos/análise , Hidrocarbonetos
11.
Huan Jing Ke Xue ; 43(10): 4357-4366, 2022 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-36224122

RESUMO

Volatile organic compound (VOCs) emissions from poultry and livestock facilities affect the surrounding environmental quality and human health. However, VOCs emissions from broiler houses have been less characterized, and studies of related dominant odorants, carcinogenic risk, and ozone formation potential are still lacking. To fill this research gap, VOCs pollutants emitted from a broiler house were investigated in this study. The VOCs emission characteristics of the broiler house during three different periods of broiler growth (early, middle, and later) were analyzed using gas chromatography-mass spectrometry. The results showed that 77 types of VOCs were detected, including 16 types of halogenated hydrocarbons, 21 types of alkanes, 5 types of olefins, 12 types of aromatic hydrocarbons, 15 types of oxygenated volatile organic compounds (OVOCs), and 8 types of sulfides. During the entire 42-day growth period, the concentrations of halogenated hydrocarbons, alkanes, olefin, aromatic hydrocarbons, and OVOCs in the broiler house showed few changes. However, with the growth of broilers, the intake of sulfur-containing amino acids and the fecal emission coefficient increased, resulting in the gradual conversion of the VOCs to sulfide. Therefore, emissions of sulfur-containing VOCs increased in the early and middle growth periods. Moreover, the increase in ventilation in the house during the later growth period resulted in a decrease in the sulfur-containing VOCs concentrations. The dominant odorants in the broiler house were naphthalene, ethyl acetate, acetaldehyde, carbon disulfide, dimethyl disulfide, methanethiol, methanethiol, and thiophene. Methanethiol had the highest odorous values, ranging from 2172.4 to 19090.9. Meanwhile, there were acceptable levels of carcinogenic risk in the early and middle growth periods, with a lifetime cancer risk (LCR) of 7.7×10-6 and 4.5×10-6, respectively. The average ozone formation potential (OFP) was (1458.9±787.4) µg·m-3. The results of this study can provide a scientific basis for the monitoring of malodorous substances and formulation of emission reduction strategies in broiler production.


Assuntos
Poluentes Atmosféricos , Dissulfeto de Carbono , Hidrocarbonetos Aromáticos , Hidrocarbonetos Halogenados , Ozônio , Compostos Orgânicos Voláteis , Acetaldeído/análise , Poluentes Atmosféricos/análise , Alcanos/análise , Alcenos/análise , Aminoácidos , Animais , Dissulfeto de Carbono/análise , Galinhas , China , Monitoramento Ambiental , Humanos , Hidrocarbonetos Aromáticos/análise , Hidrocarbonetos Halogenados/análise , Naftalenos , Ozônio/análise , Compostos de Sulfidrila , Enxofre/análise , Tiofenos/análise , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/análise
12.
J Chromatogr A ; 1682: 463523, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36179602

RESUMO

Refined edible oils and fats are known to contain olefins resisting the typical epoxidation used for the sample preparation of mineral oil saturated and aromatic hydrocarbons (MOSH and MOAH). These olefins can be misinterpreted as MOAH and are therefore an important reason for inconsistent results between laboratories. Collaborative trials confirm this assumption for low MOAH contents near the quantitation limits regularly. In the scope of this work, a new epoxidation approach was developed. Persistent olefins in refined oils could be successfully epoxidized with performic acid. The reaction kinetics was investigated using model substances for biogenic olefins and MOAH. It was rationalized why certain olefins resist epoxidation and which MOAH can potentially get lost. A prominent peak cluster in the MOAH fraction of refined palm oils could be identified by means of GC-MS and explained why it cannot be epoxidized. Based upon this, an automated and streamlined workflow for sample preparation and analysis was composed tackling major problems identified in previously published methods. Optimized and miniaturized saponification, extraction, epoxidation, and enrichment paired with online LC-GC-FID led to a robust method that was tested and validated for edible oils and fats (RSDR < 7% for MOSH and MOAH at values of 14.9 and 2.1 mg/kg, respectively). Due to increased sample amount and minimized blank values, quantitation limits below 1 mg/kg for MOSH and MOAH were achieved. The trueness of the method was verified by analyzing collaborative trial samples.


Assuntos
Hidrocarbonetos Aromáticos , Óleo Mineral , Alcenos/análise , Gorduras , Contaminação de Alimentos/análise , Hidrocarbonetos/análise , Hidrocarbonetos Aromáticos/análise , Óleo Mineral/análise , Óleos de Plantas/análise , Fluxo de Trabalho
13.
Food Chem ; 397: 133745, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35917790

RESUMO

An analysis method was developed to detect chemical markers of mineral oil aromatic hydrocarbons (MOAH) from offset printing inks in food packaging materials. 16 aromatic hydrocarbons were used as target analytes and different solid phase extraction procedures (SPE) and gas chromatography coupled to mass spectrometry (GC-MS) were tested. The concentration range studied was 0.1-7.5 µg g-1 with R2 higher than 0.9963, intraday RSD values below 5 %, RSD values between days lower than 12 %, recoveries higher than 80 %, LOD and LOQ lower than 0.09 µg g-1. Ten of the target analytes were identified in offset printing inks at concentrations between 2.28 and 8.59 µg g-1. Nine of them were also identified in the food packages examined in concentrations ranging from 0.10 to 0.33 µg g-1. These compounds were: methylnaphthalene, 2-methylnaphthalene, biphenyl, 2,6-dimethylnaphthalene, acenaphthene, 3,3',5,5'-tetramethylbiphenyl, 4,6-dimethyldibenzothiophene, 1-methylpyrene, benzo(b)naphtha(1,2-d)thiophene and 9,9'-dimethylfluorene. Mineral oil in food packaging was previously analysed by GC with flame ionization detection (FID).


Assuntos
Hidrocarbonetos Aromáticos , Óleo Mineral , Contaminação de Alimentos/análise , Embalagem de Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos/análise , Hidrocarbonetos Aromáticos/análise , Tinta , Óleo Mineral/química
14.
Regul Toxicol Pharmacol ; 132: 105193, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35618173

RESUMO

The carcinogenicity and developmental toxicity of unrefined mineral oil is related to its 3-7 ring polycyclic aromatic compounds (PAC) content. Therefore, refining operations focus on the targeted removal PAC from mineral oil that may contain aromatics of low toxicological concern. There are thus, two types of aromatic substances in mineral oil: hazardous and non-hazardous. The first type consists of 3-7 ring PAC which may be naked (unsubstituted) or lowly alkylated. The second type or non-hazardous consists of 1-7 ring aromatics with high degree of alkylation or lack of bay or fjord regions. Although these are toxicologically different, they may both elute in the same fraction when using chromatography. To understand how these two aromatic types are related we have assessed the entire mineral oil refinement process by measuring total mineral oil aromatic hydrocarbons (MOAH) content by chromatography next to regulatory hazard tests which focus on 3-7 ring PAC. MOAH content is positively correlated to its molecular weight resulting in aromatic content bias for high viscosity substances. Hazard to 3-7 ring PAC is best controlled by the validated IP346 or modified Ames test. We explain the concept of high vs low alkylation by shortly reviewing new data on alkylated PAC.


Assuntos
Hidrocarbonetos Aromáticos , Compostos Policíclicos , Carcinogênese , Carcinógenos/toxicidade , Humanos , Hidrocarbonetos Aromáticos/análise , Óleo Mineral/química , Óleo Mineral/toxicidade , Minerais , Óleos
15.
J Contam Hydrol ; 248: 104006, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35439686

RESUMO

The anaerobic degradation of aromatic hydrocarbons in a plume originating from a Pintsch gas tar-DNAPL zone was investigated using molecular, isotopic- and microbial analyses. Benzene concentrations diminished at the relatively small meter scale dimensions of the nitrate reducing plume fringe. The ratio of benzene to toluene, ethylbenzene, xylenes and naphthalene (BTEXN) in the fringe zone compared to the plume zone, indicated relatively more loss of benzene in the fringe zone than TEXN. This was substantiated by changes in relative concentrations of BTEXN, and multi-element compound specific isotope analysis for δ2H and δ13C. This was supported by the presence of (abcA) genes, indicating the presumed benzene carboxylase enzyme in the nitrate-reducing plume fringe. Biodegradation of most hydrocarbon contaminants at iron reducing conditions in the plume core, appears to be quantitatively of greater significance due to the large volume of the plume core, rather than relatively faster biodegradation under nitrate reducing conditions at the smaller volume of the plume fringe. Contaminant concentration reductions by biodegradation processes were shown to vary distinctively between the source, plume (both iron-reducing) and fringe (nitrate-reducing) zones of the plume. High anaerobic microbial activity was detected in the plume zone as well as in the dense non aqueous phase liquid (DNAPL) containing source zone. Biodegradation of most, if not all, other water-soluble Pintsch gas tar aromatic hydrocarbon contaminants occur at the relatively large dimensions of the anoxic plume core. The highest diversity and concentrations of metabolites were detected in the iron-reducing plume core, where the sum of parent compounds of aromatic hydrocarbons was greater than 10 mg/L. The relatively high concentrations of metabolites suggest a hot spot for anaerobic degradation in the core of the plume downgradient but relatively close to the DNAPL containing source zone.


Assuntos
Hidrocarbonetos Aromáticos , Poluentes Químicos da Água , Anaerobiose , Benzeno/análise , Derivados de Benzeno/análise , Biodegradação Ambiental , Hidrocarbonetos , Hidrocarbonetos Aromáticos/análise , Ferro/análise , Nitratos/análise , Tolueno/análise , Poluentes Químicos da Água/análise , Xilenos
16.
Sci Total Environ ; 819: 153029, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35026262

RESUMO

Oil sands process water (OSPW) is an industrial process effluent that contains organic compounds such as naphthenic acids (NAs) and polyaromatic hydrocarbons (PAHs), as well as large quantities of inorganic compounds in its mixture. OSPW requires effective treatment for successful reclamation and water reuse. This study investigated the impact of solar-activated zinc oxide (ZnO) photocatalysis on the degradation and removal of NAs and PAHs in OSPW, as well as the elimination of its acute toxicity. With catalyst particles suspended in the effluent (at 1 g/L) under simulated solar radiation of steady irradiance of ~278 W/m2, more than 99% removal of NAs was achieved after 4 h of treatment, while nearly all PAHs were simultaneously oxidized within the same reaction time. The photocatalytic treatment appeared to selectively convert classical NAs faster than oxidized NAs. Additionally, NAs with higher double-bond equivalents (DBEs) and higher carbon numbers seemed more susceptible to photocatalytic destruction than others. An overall pseudo first-order rate constant of 1.14 × 10-2 min-1, and a fluence-based rate constant of 6.81 × 10-1 m2/MJ were recorded in apparently hydroxyl radicals (OH) and superoxide (O2-) radicals mediated NAs degradation mechanisms. Assessment of the toxicity levels in raw and treated OSPW samples by using Microtox® bioassay indicated that the photocatalytic treatment resulted in ~50% reduction in acute toxicity. Furthermore, we showed that by monitoring the expression levels of key proinflammatory genes using qPCR that treated OSPW significantly reduced the ability of raw OSPW to activate the inflammatory response of immune cells. This indicates that at acute sub-lethal exposure doses, photocatalytic treatment also reduces immunotoxicity. Overall, our results suggest that the ZnO-based photocatalytic degradation of these NAs and PAHs in OSPW could be a significant treatment process aimed at detoxifying OSPW.


Assuntos
Hidrocarbonetos Aromáticos , Poluentes Químicos da Água , Óxido de Zinco , Ácidos Carboxílicos/análise , Hidrocarbonetos Aromáticos/análise , Campos de Petróleo e Gás , Água/análise , Poluentes Químicos da Água/análise
17.
Food Chem ; 370: 130966, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34624693

RESUMO

A rapid and solvent-saving method, based on microwave-assisted saponification (MAS) followed by epoxidation and on-line liquid chromatography (LC) - gas chromatography (GC) - flame ionization detection (FID), was optimized and validated for high-sensitivity MOAH determination in extra virgin olive oils. Quantitative recoveries and good repeatability were obtained even at concentrations of added mineral oils close to the LOQ (0.5 mg/kg for the total hump, 0.2 mg/kg for each single C-fraction). The validated method, also applied for MOSH determination (C-fraction LOQ: 0.5 mg/kg), was used to analyse 18 extra virgin olive oils from the Italian market or oil mills, and 10 additional samples extracted in the laboratory (with an Abencor apparatus) from hand-picked olives. The former resulted contaminated with variable amounts of MOSH and MOAH (on average 19.0 mg/kg and 2.5 mg/kg, respectively), while the latter showed no detectable MOAH, and low and rather constant MOSH (generally below 2.0 mg/kg).


Assuntos
Hidrocarbonetos Aromáticos , Óleo Mineral , Contaminação de Alimentos/análise , Hidrocarbonetos Aromáticos/análise , Micro-Ondas , Óleo Mineral/análise , Azeite de Oliva
18.
Food Chem ; 353: 129446, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33735771

RESUMO

Sourness is an important food taste for human. A rapid, accurate method was used to generalize the structure similarity and diversity of sour compounds. Based on the product ion and neutral loss of sour compounds, ambient ionization techniques combined with quadrupole-Orbitrap mass spectrometry (AI-Q-Orbitrap) was employed. According to the behavior of sour compounds in the process of high collision dissociation (HCD) of MS/MS, three fragmentation pathway schemes were proposed: (1) charge-driven fragmentation and CO2 loss, (2) six-membered ring rearrangement and Cα-Cß cleavage, and (3) elimination rearrangement and H2O, CO2 and CO loss in succession. Besides, structure information about characteristic product ions and characteristic neutral losses was summarized. Finally, multi-class sour compounds including monoacids, diacids, polyacids and phenolic acids in wine and tea were identified and compared. Therefore, sour compounds and their structure information can be determined by AI-MS based on characteristic product ion and neutral loss.


Assuntos
Análise de Alimentos/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Paladar , Chá/química , Vinho/análise , Ácidos Graxos/análise , Humanos , Hidrocarbonetos Aromáticos/análise , Hidroxibenzoatos/análise , Íons/análise , Íons/química , Espectrometria de Massas em Tandem/métodos
19.
J Chromatogr A ; 1643: 462044, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33744654

RESUMO

The determination of the level of mineral oil contamination in foods is a well-known problem. This class of contaminants is generally divided into mineral oil saturated and aromatic hydrocarbons with different toxicological relevance and analytical challenges. Among the many challenges, data interpretation and integration represent an important source of uncertainty in the results provided by different laboratories leading to a variation evaluated on the order of 20%. The use of multidimensional comprehensive gas chromatography (GC × GC) has been proposed to support the data interpretation but the integration and the reliability of the results using this methodology has never been systematically evaluated. The aim of this work was to assess the integration and quantification performance of a two-dimensional (2D) software. The data were generated using a novel, completely automated platform, namely LC-GC × GC coupled to dual detectors, i.e., time-of-flight mass spectrometer (MS) and flame ionization detector (FID). From a systematic study of the failures of the two-dimensional quantification approach a novel solution was proposed for simplifying and automating the entire process. The novel algorithm was tested on ad hoc created samples (i.e. a paraffin mixture added of n-alkanes) and real-world samples proving the agreement of the results obtained by LC-GC × GC and the traditional mono-dimensional approach. Moreover, the benefits of using an entirely integrated platform were emphasized, particularly regarding the identity confirmation capability of the MS data, which can be easily translated into the 2D FID quantification feature.


Assuntos
Hidrocarbonetos Aromáticos/análise , Óleo Mineral/análise , Alcanos/análise , Cromatografia Gasosa , Cromatografia Líquida , Ionização de Chama , Espectrometria de Massas , Reprodutibilidade dos Testes
20.
J Chem Ecol ; 47(3): 265-279, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33656626

RESUMO

The Mediterranean fruit fly (medfly), Ceratitis capitata, is a worldwide pest of agriculture able to use olfactory cues to locate habitat, food sources, mates and oviposition sites. The sensitivity of medfly olfaction has been exploited to develop olfactory-based attractants that are currently important tools for detection, control and eradication of its populations. Among these is Cera Trap® (BIOIBERICA, S.A.U.), a cost-effective bait. Here we used coupled gas chromatography/electroantennographic detection (GC-EAD) and GC/mass spectrometry (GC-MS) approaches to characterize the medfly antennally-active compounds released by this lure. We identified GC peaks corresponding to chemicals belonging to six different classes including heterocyclic aromatic compounds, aliphatic alcohols, aldehydes, esters, sesquiterpene hydrocarbons, and aromatic alcohols. We tested ten potential candidate volatiles belonging to these classes and predicted to be emitted by the lure and found that they were eliciting electroantennographic responses in medfly adults. These results will help in unravelling the physiological mechanisms of odor perception in both sexes, especially in relation to Cera Trap® attractant activity, which in the field has been shown to be female-specific. These findings and their developments will ultimately expand the toolbox for medfly control in the field.


Assuntos
Ceratitis capitata/química , Ceratitis capitata/metabolismo , Odorantes/análise , Compostos Orgânicos Voláteis/análise , Álcoois/análise , Aldeídos/análise , Animais , Fenômenos Eletrofisiológicos , Ésteres/análise , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Compostos Heterocíclicos/análise , Hidrocarbonetos Aromáticos/análise , Masculino , Sesquiterpenos/análise , Olfato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...